0=(-16t^2+32t+64)

Simple and best practice solution for 0=(-16t^2+32t+64) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(-16t^2+32t+64) equation:



0=(-16t^2+32t+64)
We move all terms to the left:
0-((-16t^2+32t+64))=0
We add all the numbers together, and all the variables
-((-16t^2+32t+64))=0
We calculate terms in parentheses: -((-16t^2+32t+64)), so:
(-16t^2+32t+64)
We get rid of parentheses
-16t^2+32t+64
Back to the equation:
-(-16t^2+32t+64)
We get rid of parentheses
16t^2-32t-64=0
a = 16; b = -32; c = -64;
Δ = b2-4ac
Δ = -322-4·16·(-64)
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32\sqrt{5}}{2*16}=\frac{32-32\sqrt{5}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32\sqrt{5}}{2*16}=\frac{32+32\sqrt{5}}{32} $

See similar equations:

| 9/4a=72 | | y+2/2=2y-2/2 | | 5x+30-2x=60 | | 1⁄2d−1=24 | | 5+d/2=14 | | 1/2y+2=3/2 | | 2+x=365 | | 7.5x=2x-26.4 | | (7a-3)^2=27 | | 10-6x-2=6x-10 | | -4(-5x-7)+8=36+7x | | 221=17p | | -5(m-27)=4m | | 2x+5247=210355 | | 3g-15=-2g+25 | | 7-3=6+t | | -5(m-270=4m | | -17z-2z+-7z+20z=18 | | -6x^2-17x+14=4-7x | | 3b+b-3b+3b-3b=4 | | 18c-14c+2c=18 | | 4h-6=12+h | | 15c-13c-c=11 | | 3v+4v+3v-9v=12 | | 35=0.2(255-10e) | | 1=2x-3=6 | | 13=14x | | x2+4x−32=0 | | 1/4x-8=10 | | 1+4x=-14+8x | | 128x-144=16(8x-9) | | 17d+4d-7d-9d+4d=18 |

Equations solver categories